Logo Search packages:      
Sourcecode: scummvm version File versions  Download package

router.cpp

/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.      See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL: https://scummvm.svn.sourceforge.net/svnroot/scummvm/scummvm/tags/release-0-11-1/engines/sword1/router.cpp $
 * $Id: router.cpp 30944 2008-02-23 22:50:18Z sev $
 *
 */


#include "common/util.h"

#include "sword1/router.h"
#include "sword1/swordres.h"
#include "sword1/sworddefs.h"
#include "sword1/objectman.h"
#include "sword1/resman.h"

namespace Sword1 {

/****************************************************************************
 *    JROUTER.C                     polygon router with modular walks
 *                                              using a tree of modules
 *                                              21 july 94
 *    3  november 94
 *    System currently works by scanning grid data and coming up with a ROUTE
 *    as a series of way points(nodes), the smoothest eight directional PATH
 *          through these nodes is then found, and a WALK created to fit the PATH.
 *
 *          Two funtions are called by the user, RouteFinder creates a route as a
 *          module list, HardWalk creates an animation list from the module list.
 *          The split is only provided to allow the possibility of turning the
 *          autorouter over two game cycles.
 ****************************************************************************
 *
 *    Routine timings on osborne 486
 *
 *          Read floor resource (file already loaded)  112 pixels
 *
 *          Read mega resource (file already loaded)   112 pixels
 *
 *
 *
 ****************************************************************************
 *
 *    Modified 12 Oct 95
 *
 *          Target Points within 1 pixel of a line are ignored ???
 *
 *          Modules split into  Points within 1 pixel of a line are ignored ???
 *
 ****************************************************************************/

#define           NO_DIRECTIONS                             8
#define           SLOW_IN                                               3
#define           SLOW_OUT                                        7
#define           ROUTE_END_FLAG                      255

Router::Router(ObjectMan *pObjMan, ResMan *pResMan) {
      _objMan = pObjMan;
      _resMan = pResMan;
      _nNodes = _nBars = 0;
      _playerTargetX = _playerTargetY = _playerTargetDir = _playerTargetStance = 0;
      _diagonalx = _diagonaly = 0;
}

/*
 *    CODE
 */

int32 Router::routeFinder(int32 id, Object *megaObject, int32 x, int32 y, int32 dir) {
      /*********************************************************************
       * RouteFinder.C        polygon router with modular walks
       *                                  21 august 94
       *                                  3  november 94
       * routeFinder creates a list of modules that enables HardWalk to
       * create an animation list.
       *
       * routeFinder currently works by scanning grid data and coming up
       * with a ROUTE as a series of way points(nodes), the smoothest eight
       * directional PATH through these nodes is then found, this
       * information is made available to HardWalk for a WALK to be created
       * to fit the PATH.
       *
       * 30 november 94 return values modified
       *
       * return   0 = failed to find a route
       *
       *                1 = found a route
       *
       *                2 = mega already at target
       *
       *********************************************************************/

      int32 routeFlag = 0;
      int32 solidFlag = 0;
      WalkData *walkAnim;

      megaId = id;

      LoadWalkResources(megaObject, x, y, dir);

      walkAnim = megaObject->o_route;

      _framesPerStep = _nWalkFrames/2;
      _framesPerChar = _nWalkFrames * NO_DIRECTIONS;

      // offset pointers added Oct 30 95 JPS
      standFrames = _framesPerChar;
      turnFramesLeft = standFrames;
      turnFramesRight = standFrames;
      walkFramesLeft = 0;
      walkFramesRight = 0;
      slowInFrames = 0;
      slowOutFrames = 0;

      if (megaId == GEORGE) {
            turnFramesLeft = 3 * _framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN + 4 * SLOW_OUT;
            turnFramesRight = 3 * _framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN + 4 * SLOW_OUT + NO_DIRECTIONS;
            walkFramesLeft = _framesPerChar + NO_DIRECTIONS;
            walkFramesRight = 2 * _framesPerChar + NO_DIRECTIONS;
            slowInFrames = 3 * _framesPerChar + NO_DIRECTIONS;
            slowOutFrames = 3 * _framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN;
      } else if (megaId == NICO) {
            turnFramesLeft = _framesPerChar + NO_DIRECTIONS;
            turnFramesRight = _framesPerChar + 2 * NO_DIRECTIONS;
            walkFramesLeft = 0;
            walkFramesRight = 0;
            slowInFrames = 0;
            slowOutFrames = 0;
      }

// **************************************************************************
// All route data now loaded start finding a route
// **************************************************************************
// **************************************************************************
// check if we can get a route through the floor            changed 12 Oct95 JPS
// **************************************************************************

      routeFlag = getRoute();

      switch (routeFlag) {
      case 2:
            // special case for zero length route

            // if target direction specified as any
            if (_targetDir > 7)
                  _targetDir = _startDir;

            // just a turn on the spot is required set an end module for
            // the route let the animator deal with it
            // modularPath is normally set by extractRoute

            _modularPath[0].dir = _startDir;
            _modularPath[0].num = 0;
            _modularPath[0].x = _startX;
            _modularPath[0].y = _startY;
            _modularPath[1].dir = _targetDir;
            _modularPath[1].num = 0;
            _modularPath[1].x = _startX;
            _modularPath[1].y = _startY;
            _modularPath[2].dir = 9;
            _modularPath[2].num = ROUTE_END_FLAG;

            slidyWalkAnimator(walkAnim);
            routeFlag = 2;
            break;
      case 1:
            // A normal route. Convert the route to an exact path
            smoothestPath();

            // The Route had waypoints and direction options

            // The Path is an exact set of lines in 8 directions that
            // reach the target.

            // The path is in module format, but steps taken in each
            // direction are not accurate

            // if target dir = 8 then the walk isn't linked to an anim so
            // we can create a route without sliding and miss the exact
            // target

            if (_targetDir == NO_DIRECTIONS) {
                  // can end facing ANY direction (ie. exact end
                  // position not vital) - so use SOLID walk to
                  // avoid sliding to exact position

                  solidPath();
                  solidFlag = solidWalkAnimator(walkAnim);
            }

            if (!solidFlag) {
                  // if we failed to create a SOLID route, do a SLIDY
                  // one instead

                  slidyPath();
                  slidyWalkAnimator(walkAnim);
            }

            break;
      default:
            // Route didn't reach target so assume point was off the floor
            // routeFlag = 0;
            break;
      }

      return routeFlag; // send back null route
}

int32 Router::getRoute() {
      /*********************************************************************
       * GetRoute.C                       extract a path from walk grid
       *                                        12 october 94
       *
       * GetRoute currently works by scanning grid data and coming up with
       * a ROUTE as a series of way points(nodes).
       *
       * static routeData _route[O_ROUTE_SIZE];
       *
       * return   0 = failed to find a route
       *
       *          1 = found a route
       *
       *          2 = mega already at target
       *
       *          3 = failed to find a route because target was on a line
       *
       *********************************************************************/

      int32 routeGot = 0;

      if (_startX == _targetX && _startY == _targetY)
            routeGot = 2;
      else {
            // 'else' added by JEL (23jan96) otherwise 'routeGot' affected
            // even when already set to '2' above - causing some 'turns'
            // to walk downwards on the spot

            // returns 3 if target on a line ( +- 1 pixel )
            routeGot = checkTarget(_targetX, _targetY);
      }

      if (routeGot == 0) {
            // still looking for a route check if target is within a pixel
            // of a line

            // scan through the nodes linking each node to its nearest
            // neighbour until no more nodes change

            // This is the routine that finds a route using scan()

            int32 level = 1;

            while (scan(level))
                  level++;

            // Check to see if the route reached the target

            if (_node[_nNodes].dist < 9999) {
                  // it did so extract the route as nodes and the
                  // directions to go between each node

                  routeGot = 1;
                  extractRoute();

                  // route.X,route.Y and route.Dir now hold all the
                  // route infomation with the target dir or route
                  // continuation
            }
      }

      return routeGot;
}

// THE SLIDY PATH ROUTINES

int32 Router::smoothestPath() {
      // This is the second big part of the route finder and the the only
      // bit that tries to be clever (the other bits are clever).
      //
      // This part of the autorouter creates a list of modules from a set of
      // lines running across the screen. The task is complicated by two
      // things:
      //
      // Firstly in choosing a route through the maze of nodes the routine
      // tries to minimise the amount of each individual turn avoiding 90
      // degree and greater turns (where possible) and reduces the total
      // number of turns (subject to two 45 degree turns being better than
      // one 90 degree turn).
      //
      // Secondly when walking in a given direction the number of steps
      // required to reach the end of that run is not calculated accurately.
      // This is because I was unable to derive a function to relate number
      // of steps taken between two points to the shrunken step size

      int i;
      int32 steps = 0;
      int32 lastDir;
      int32 tempturns[4];
      int32 turns[4];
      const int32 turntable[NO_DIRECTIONS] = { 0, 1, 3, 5, 7, 5, 3, 1 };

      // route.X route.Y and route.Dir start at far end

      _smoothPath[0].x = _startX;
      _smoothPath[0].y = _startY;
      _smoothPath[0].dir = _startDir;
      _smoothPath[0].num = 0;

      lastDir = _startDir;

      // for each section of the route

      for (int p = 0; p < _routeLength; p++) {
            int32 dirS = _route[p].dirS;
            int32 dirD = _route[p].dirD;
            int32 nextDirS = _route[p + 1].dirS;
            int32 nextDirD = _route[p + 1].dirD;

            // Check directions into and out of a pair of nodes going in
            int32 dS = dirS - lastDir;
            if (dS < 0)
                  dS = dS + NO_DIRECTIONS;

            int32 dD = dirD - lastDir;
            if (dD < 0)
                  dD = dD + NO_DIRECTIONS;

            // coming out
            int32 dSS = dirS - nextDirS;
            if (dSS < 0)
                  dSS = dSS + NO_DIRECTIONS;

            int32 dDD = dirD - nextDirD;
            if (dDD < 0)
                  dDD = dDD + NO_DIRECTIONS;

            int32 dSD = dirS - nextDirD;
            if (dSD < 0)
                  dSD = dSD + NO_DIRECTIONS;

            int32 dDS = dirD - nextDirS;
            if (dDS < 0)
                  dDS = dDS + NO_DIRECTIONS;

            // Determine the amount of turning involved in each possible path
            dS = turntable[dS];
            dD = turntable[dD];
            dSS = turntable[dSS];
            dDD = turntable[dDD];
            dSD = turntable[dSD];
            dDS = turntable[dDS];

            // get the best path out ie assume next section uses best direction
            if (dSD < dSS)
                  dSS = dSD;
            if (dDS < dDD)
                  dDD = dDS;

            // Rate each option. Split routes look crap so weight against them
            tempturns[0] = dS + dSS + 3;
            turns[0] = 0;
            tempturns[1] = dS + dDD;
            turns[1] = 1;
            tempturns[2] = dD + dSS;
            turns[2] = 2;
            tempturns[3] = dD + dDD + 3;
            turns[3] = 3;

            // set up turns as a sorted array of the turn values
            for (i = 0; i < 3; i++) {
                  for (int j = 0; j < 3; j++) {
                        if (tempturns[j] > tempturns[j + 1]) {
                              SWAP(turns[j], turns[j + 1]);
                              SWAP(tempturns[j], tempturns[j + 1]);
                        }
                  }
            }

            // best option matched in order of the priority we would like
            // to see on the screen but each option must be checked to see
            // if it can be walked

            int32 options = newCheck(1, _route[p].x, _route[p].y, _route[p + 1].x, _route[p + 1].y);

            assert(options);

            i = 0;
            steps = 0;

            do {
                  int32 opt = 1 << turns[i];
                  if (options & opt)
                        steps = smoothCheck(turns[i], p, dirS, dirD);
                  i++;
            } while (steps == 0 && i < 4);

            assert(steps);

            // route.X route.Y route.dir and bestTurns start at far end
      }

      // best turns will end heading as near as possible to target dir rest
      // is down to anim for now

      _smoothPath[steps].dir = 9;
      _smoothPath[steps].num = ROUTE_END_FLAG;
      return 1;
}

int32 Router::smoothCheck(int32 best, int32 p, int32 dirS, int32 dirD) {
      /*********************************************************************
       * Slip sliding away
       * This path checker checks to see if a walk that exactly follows the
       * path would be valid. This should be inherently true for atleast one
       * of the turn options.
       * No longer checks the data it only creates the smoothPath array JPS
       *********************************************************************/

      // FIXME: Using 'static' vars in a method is evil -- they should almost
      // always be turned into member variables instead.
      static int32 k;
      int32 dsx, dsy;
      int32 ddx, ddy;
      int32 ss0, ss1, ss2;
      int32 sd0, sd1, sd2;

      if (p == 0)
            k = 1;

      int32 x = _route[p].x;
      int32 y = _route[p].y;
      int32 x2 = _route[p + 1].x;
      int32 y2 = _route[p + 1].y;
      int32 ldx = x2 - x;
      int32 ldy = y2 - y;
      int32 dirX = 1;
      int32 dirY = 1;

      if (ldx < 0) {
            ldx = -ldx;
            dirX = -1;
      }

      if (ldy < 0) {
            ldy = -ldy;
            dirY = -1;
      }

      // set up sd0-ss2 to reflect possible movement in each direction

      if (dirS == 0 || dirS == 4) { // vert and diag
            ddx = ldx;
            ddy = (ldx * _diagonaly) / _diagonalx;
            dsy = ldy - ddy;
            ddx = ddx * dirX;
            ddy = ddy * dirY;
            dsy = dsy * dirY;
            dsx = 0;

            sd0 = (ddx + _modX[dirD] / 2) / _modX[dirD];
            ss0 = (dsy + _modY[dirS] / 2) / _modY[dirS];
            sd1 = sd0 / 2;
            ss1 = ss0 / 2;
            sd2 = sd0 - sd1;
            ss2 = ss0 - ss1;
      } else {
            ddy = ldy;
            ddx = (ldy * _diagonalx) / _diagonaly;
            dsx = ldx - ddx;
            ddy = ddy * dirY;
            ddx = ddx * dirX;
            dsx = dsx * dirX;
            dsy = 0;

            sd0 = (ddy + _modY[dirD] / 2) / _modY[dirD];
            ss0 = (dsx + _modX[dirS] / 2) / _modX[dirS];
            sd1 = sd0 / 2;
            ss1 = ss0 / 2;
            sd2 = sd0 - sd1;
            ss2 = ss0 - ss1;
      }

      switch (best) {
      case 0:           // halfsquare, diagonal, halfsquare
            _smoothPath[k].x = x + dsx / 2;
            _smoothPath[k].y = y + dsy / 2;
            _smoothPath[k].dir = dirS;
            _smoothPath[k].num = ss1;
            k++;

            _smoothPath[k].x = x + dsx / 2 + ddx;
            _smoothPath[k].y = y + dsy / 2 + ddy;
            _smoothPath[k].dir = dirD;
            _smoothPath[k].num = sd0;
            k++;

            _smoothPath[k].x = x + dsx + ddx;
            _smoothPath[k].y = y + dsy + ddy;
            _smoothPath[k].dir = dirS;
            _smoothPath[k].num = ss2;
            k++;

            break;
      case 1:           // square, diagonal
            _smoothPath[k].x = x + dsx;
            _smoothPath[k].y = y + dsy;
            _smoothPath[k].dir = dirS;
            _smoothPath[k].num = ss0;
            k++;

            _smoothPath[k].x = x2;
            _smoothPath[k].y = y2;
            _smoothPath[k].dir = dirD;
            _smoothPath[k].num = sd0;
            k++;

            break;
      case 2:           // diagonal square
            _smoothPath[k].x = x + ddx;
            _smoothPath[k].y = y + ddy;
            _smoothPath[k].dir = dirD;
            _smoothPath[k].num = sd0;
            k++;

            _smoothPath[k].x = x2;
            _smoothPath[k].y = y2;
            _smoothPath[k].dir = dirS;
            _smoothPath[k].num = ss0;
            k++;

            break;
      default:    // halfdiagonal, square, halfdiagonal
            _smoothPath[k].x = x + ddx / 2;
            _smoothPath[k].y = y + ddy / 2;
            _smoothPath[k].dir = dirD;
            _smoothPath[k].num = sd1;
            k++;

            _smoothPath[k].x = x + dsx + ddx / 2;
            _smoothPath[k].y = y + dsy + ddy / 2;
            _smoothPath[k].dir = dirS;
            _smoothPath[k].num = ss0;
            k++;

            _smoothPath[k].x = x2;
            _smoothPath[k].y = y2;
            _smoothPath[k].dir = dirD;
            _smoothPath[k].num = sd2;
            k++;

            break;
      }

      return k;
}

void Router::slidyPath() {
      /*********************************************************************
       * slidyPath creates a path based on part steps with no sliding to get
       * as near as possible to the target without any sliding this routine
       * is intended for use when just clicking about.
       *
       * produce a module list from the line data
       *********************************************************************/

      int32 smooth = 1;
      int32 slidy = 1;

      // strip out the short sections

      _modularPath[0].x = _smoothPath[0].x;
      _modularPath[0].y = _smoothPath[0].y;
      _modularPath[0].dir = _smoothPath[0].dir;
      _modularPath[0].num = 0;

      while (_smoothPath[smooth].num < ROUTE_END_FLAG) {
            int32 scale = _scaleA * _smoothPath[smooth].y + _scaleB;
            int32 deltaX = _smoothPath[smooth].x - _modularPath[slidy - 1].x;
            int32 deltaY = _smoothPath[smooth].y - _modularPath[slidy - 1].y;
            // quarter a step minimum
            int32 stepX = (scale * _modX[_smoothPath[smooth].dir]) >> 19;
            int32 stepY = (scale * _modY[_smoothPath[smooth].dir]) >> 19;

            if (ABS(deltaX) >= ABS(stepX) && ABS(deltaY) >= ABS(stepY)) {
                  _modularPath[slidy].x = _smoothPath[smooth].x;
                  _modularPath[slidy].y = _smoothPath[smooth].y;
                  _modularPath[slidy].dir = _smoothPath[smooth].dir;
                  _modularPath[slidy].num = 1;
                  slidy++;
            }
            smooth++;
      }

      // in case the last bit had no steps

      if (slidy > 1) {
            _modularPath[slidy - 1].x = _smoothPath[smooth - 1].x;
            _modularPath[slidy - 1].y = _smoothPath[smooth - 1].y;
      }

      // set up the end of the walk

      _modularPath[slidy].x = _smoothPath[smooth - 1].x;
      _modularPath[slidy].y = _smoothPath[smooth - 1].y;
      _modularPath[slidy].dir = _targetDir;
      _modularPath[slidy].num = 0;
      slidy++;

      _modularPath[slidy].x = _smoothPath[smooth - 1].x;
      _modularPath[slidy].y = _smoothPath[smooth - 1].y;
      _modularPath[slidy].dir = 9;
      _modularPath[slidy].num = ROUTE_END_FLAG;
}

void Router::slidyWalkAnimator(WalkData *walkAnim) {
      /*********************************************************************
       * Skidding every where HardWalk creates an animation that exactly
       * fits the smoothPath and uses foot slipping to fit whole steps into
       * the route
       *
       *    Parameters: georgeg, mouseg
       *    Returns:    rout
       *
       * produce a module list from the line data
       *********************************************************************/

      // FIXME: Using 'static' vars in a method is evil -- they should almost
      // always be turned into member variables instead.
      static int32 left = 0;
      int32 p;
      int32 lastDir;
      int32 lastRealDir;
      int32 currentDir;
      int32 turnDir;
      int32 scale;
      int32 step;
      int32 module;
      int32 moduleEnd;
      int32 moduleX;
      int32 moduleY;
      int32 module16X = 0;
      int32 module16Y = 0;
      int32 stepX;
      int32 stepY;
      int32 errorX;
      int32 errorY;
      int32 lastErrorX;
      int32 lastErrorY;
      int32 lastCount;
      int32 stepCount;
      int32 frameCount;
      int32 frames;
      int32 frame;

      // start at the begining for a change
      p = 0;
      lastDir = _modularPath[0].dir;
      currentDir = _modularPath[1].dir;

      if (currentDir == NO_DIRECTIONS)
            currentDir = lastDir;

      moduleX = _startX;
      moduleY = _startY;
      module16X = moduleX << 16;
      module16Y = moduleY << 16;
      stepCount = 0;

      //****************************************************************************
      // SLIDY
      // START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
      // BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
      //****************************************************************************
      module =    _framesPerChar + lastDir;
      walkAnim[stepCount].frame = module;
      walkAnim[stepCount].step = 0;
      walkAnim[stepCount].dir = lastDir;
      walkAnim[stepCount].x = moduleX;
      walkAnim[stepCount].y = moduleY;
      stepCount += 1;

      //****************************************************************************
      // SLIDY
      // TURN TO START THE WALK
      //****************************************************************************
      // rotate if we need to
      if (lastDir != currentDir) {
            // get the direction to turn
            turnDir = currentDir - lastDir;
            if ( turnDir < 0)
                        turnDir += NO_DIRECTIONS;

            if (turnDir > 4)
                  turnDir = -1;
            else if (turnDir > 0)
                  turnDir = 1;

            // rotate to new walk direction
            // for george and nico put in a head turn at the start
            if ((megaId == GEORGE) || (megaId == NICO)) {
                  if ( turnDir < 0) {     // new frames for turn frames 29oct95jps
                        module =    turnFramesLeft + lastDir;
                  } else {
                        module =    turnFramesRight + lastDir;
                  }
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }

            // rotate till were facing new dir then go back 45 degrees
            while (lastDir != currentDir) {
                  lastDir += turnDir;
                  if ( turnDir < 0) {     // new frames for turn frames 29oct95jps
                        if ( lastDir < 0)
                                    lastDir += NO_DIRECTIONS;
                        module =    turnFramesLeft + lastDir;
                  } else {
                        if ( lastDir > 7)
                                    lastDir -= NO_DIRECTIONS;
                        module =    turnFramesRight + lastDir;
                  }
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }
            // the back 45 degrees bit
            stepCount -= 1;// step back one because new head turn for george takes us past the new dir
      }
      // his head is in the right direction
      lastRealDir = currentDir;

      //****************************************************************************
      // SLIDY
      // THE WALK
      //****************************************************************************

      if (left == 0)
            left = _framesPerStep;
      else
            left = 0;

      lastCount = stepCount;
      lastDir = 99;// this ensures that we don't put in turn frames for the start
      currentDir = 99;// this ensures that we don't put in turn frames for the start
      do {
            while (_modularPath[p].num == 0) {
                  p = p + 1;
                  if (currentDir != 99)
                        lastRealDir = currentDir;
                  lastDir = currentDir;
                  lastCount = stepCount;
            }
            //calculate average amount to lose in each step on the way to the next _node
            currentDir = _modularPath[p].dir;
            if (currentDir < NO_DIRECTIONS) {
                  module =    currentDir * _framesPerStep * 2 + left;
                  if (left == 0)
                        left = _framesPerStep;
                  else
                        left = 0;
                  moduleEnd = module + _framesPerStep;
                  step = 0;
                  scale = (_scaleA * moduleY + _scaleB);
                  do {
                        module16X += _dx[module]*scale;
                        module16Y += _dy[module]*scale;
                        moduleX = module16X >> 16;
                        moduleY = module16Y >> 16;
                        walkAnim[stepCount].frame = module;
                        walkAnim[stepCount].step = step;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                        step += 1;
                        module += 1;
                  } while ( module < moduleEnd) ;
                  stepX = _modX[_modularPath[p].dir];
                  stepY = _modY[_modularPath[p].dir];
                  errorX = _modularPath[p].x -  moduleX;
                  errorX = errorX * stepX;
                  errorY = _modularPath[p].y -  moduleY;
                  errorY = errorY * stepY;
                  if ((errorX < 0) || (errorY < 0)) {
                        _modularPath[p].num = 0;      // the end of the path
                        // okay those last steps took us past our target but do we want to scoot or moonwalk
                        frames = stepCount - lastCount;
                        errorX = _modularPath[p].x - walkAnim[stepCount-1].x;
                        errorY = _modularPath[p].y - walkAnim[stepCount-1].y;

                        if (frames > _framesPerStep) {
                              lastErrorX = _modularPath[p].x - walkAnim[stepCount-7].x;
                              lastErrorY = _modularPath[p].y - walkAnim[stepCount-7].y;
                              if (stepX==0) {
                                    if (3*ABS(lastErrorY) < ABS(errorY)) { //the last stop was closest
                                          stepCount -= _framesPerStep;
                                          if (left == 0)
                                                left = _framesPerStep;
                                          else
                                                left = 0;
                                    }
                              } else {
                                    if (3*ABS(lastErrorX) < ABS(errorX)) { //the last stop was closest
                                          stepCount -= _framesPerStep;
                                          if (left == 0)
                                                left = _framesPerStep;
                                          else
                                                left = 0;
                                    }
                              }
                        }
                        errorX = _modularPath[p].x - walkAnim[stepCount-1].x;
                        errorY = _modularPath[p].y - walkAnim[stepCount-1].y;
                        // okay we've reached the end but we still have an error
                        if (errorX != 0) {
                              frameCount = 0;
                              frames = stepCount - lastCount;
                              do {
                                    frameCount += 1;
                                    walkAnim[lastCount + frameCount - 1].x += errorX*frameCount/frames;
                              } while (frameCount<frames);
                        }
                        if (errorY != 0) {
                              frameCount = 0;
                              frames = stepCount - lastCount;
                              do {
                                    frameCount += 1;
                                    walkAnim[lastCount + frameCount-1].y +=   errorY*frameCount/frames;
                              } while (frameCount<frames);
                        }
                        // Now is the time to put in the turn frames for the last turn
                        if (frames < _framesPerStep)
                              currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
                        if (currentDir != 99)
                              lastRealDir = currentDir;
                        // check each turn condition in turn
                        if (((lastDir != 99) && (currentDir != 99)) && (megaId == GEORGE)) { // only for george
                              lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
                              if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6))) {
                                    // turn at the end of the last walk
                                    frame = lastCount - _framesPerStep;
                                    do {
                                          walkAnim[frame].frame += 104;//turning left
                                          frame += 1;
                                    } while (frame < lastCount );
                              }
                              if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6))) {
                                    // turn at the end of the current walk
                                    frame = lastCount - _framesPerStep;
                                    do {
                                          walkAnim[frame].frame += 200; //was 60 now 116
                                          frame += 1;
                                    } while (frame < lastCount );
                              }
                              lastDir = currentDir;
                        }
                        // all turns checked

                        lastCount = stepCount;
                        moduleX = walkAnim[stepCount-1].x;
                        moduleY =   walkAnim[stepCount-1].y;
                        module16X = moduleX << 16;
                        module16Y = moduleY << 16;
                  }
            }
      } while (_modularPath[p].dir < NO_DIRECTIONS);



      if (lastRealDir == 99) {
            error("SlidyWalkAnimatorlast direction error\n");
      }
      //****************************************************************************
      // SLIDY
      // TURNS TO END THE WALK ?
      //****************************************************************************

      // We've done the walk now put in any turns at the end


      if (_targetDir == NO_DIRECTIONS) {  // stand in the last direction
            module =    standFrames + lastRealDir;
            _targetDir =      lastRealDir;
            walkAnim[stepCount].frame = module;
            walkAnim[stepCount].step = 0;
            walkAnim[stepCount].dir = lastRealDir;
            walkAnim[stepCount].x = moduleX;
            walkAnim[stepCount].y = moduleY;
            stepCount += 1;
      }
      if (_targetDir == 9) {
            if (stepCount == 0) {
                  module =    _framesPerChar + lastRealDir;
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastRealDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }
      } else if (_targetDir != lastRealDir) { // rotate to _targetDir
            // rotate to target direction
            turnDir = _targetDir - lastRealDir;
            if ( turnDir < 0)
                  turnDir += NO_DIRECTIONS;

            if (turnDir > 4)
                  turnDir = -1;
            else if (turnDir > 0)
                  turnDir = 1;

            // rotate to target direction
            // for george and nico put in a head turn at the start
            if ((megaId == GEORGE) || (megaId == NICO)) {
                  if ( turnDir < 0) {     // new frames for turn frames 29oct95jps
                        module =    turnFramesLeft + lastDir;
                  } else {
                        module =    turnFramesRight + lastDir;
                  }
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastRealDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }

            // rotate if we need to
            while (lastRealDir != _targetDir) {
                  lastRealDir += turnDir;
                  if ( turnDir < 0) {     // new frames for turn frames 29oct95jps
                        if ( lastRealDir < 0)
                                    lastRealDir += NO_DIRECTIONS;
                        module =    turnFramesLeft + lastRealDir;
                  } else {
                        if ( lastRealDir > 7)
                                    lastRealDir -= NO_DIRECTIONS;
                        module =    turnFramesRight + lastRealDir;
                  }
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastRealDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }
            module =    standFrames + lastRealDir;
            walkAnim[stepCount-1].frame = module;
      } else { // just stand at the end
            module =    standFrames + lastRealDir;
            walkAnim[stepCount].frame = module;
            walkAnim[stepCount].step = 0;
            walkAnim[stepCount].dir = lastRealDir;
            walkAnim[stepCount].x = moduleX;
            walkAnim[stepCount].y = moduleY;
            stepCount += 1;
      }

      walkAnim[stepCount].frame = 512;
      stepCount += 1;
      walkAnim[stepCount].frame = 512;
      stepCount += 1;
      walkAnim[stepCount].frame = 512;
//    Tdebug("RouteFinder RouteSize is %d", stepCount);
      return;
}

// ****************************************************************************
// * THE SOLID PATH ROUTINES
// ****************************************************************************

void Router::solidPath() {
      /*********************************************************************
       * SolidPath creates a path based on whole steps with no sliding to
       * get as near as possible to the target without any sliding this
       * routine is currently unused, but is intended for use when just
       * clicking about.
       *
       * produce a module list from the line data
       *********************************************************************/

      int32 smooth;
      int32 solid;
      int32 scale;
      int32 stepX;
      int32 stepY;
      int32 deltaX;
      int32 deltaY;

      // strip out the short sections

      solid = 1;
      smooth = 1;
      _modularPath[0].x = _smoothPath[0].x;
      _modularPath[0].y = _smoothPath[0].y;
      _modularPath[0].dir = _smoothPath[0].dir;
      _modularPath[0].num = 0;

      do {
            scale = _scaleA * _smoothPath[smooth].y + _scaleB;
            deltaX = _smoothPath[smooth].x - _modularPath[solid - 1].x;
            deltaY = _smoothPath[smooth].y - _modularPath[solid - 1].y;
            stepX = _modX[_smoothPath[smooth].dir];
            stepY = _modY[_smoothPath[smooth].dir];
            stepX = stepX * scale;
            stepY = stepY * scale;
            stepX = stepX >> 16;
            stepY = stepY >> 16;

            if (ABS(deltaX) >= ABS(stepX) && ABS(deltaY) >= ABS(stepY)) {
                  _modularPath[solid].x = _smoothPath[smooth].x;
                  _modularPath[solid].y = _smoothPath[smooth].y;
                  _modularPath[solid].dir = _smoothPath[smooth].dir;
                  _modularPath[solid].num = 1;
                  solid++;
            }

            smooth++;
      } while (_smoothPath[smooth].num < ROUTE_END_FLAG);

      // in case the last bit had no steps

      if (solid == 1) {
            // there were no paths so put in a dummy end
            solid = 2;
            _modularPath[1].dir = _smoothPath[0].dir;
            _modularPath[1].num = 0;
      }

      _modularPath[solid - 1].x = _smoothPath[smooth - 1].x;
      _modularPath[solid - 1].y = _smoothPath[smooth - 1].y;

      // set up the end of the walk
      _modularPath[solid].x = _smoothPath[smooth - 1].x;
      _modularPath[solid].y = _smoothPath[smooth - 1].y;
      _modularPath[solid].dir = 9;
      _modularPath[solid].num = ROUTE_END_FLAG;
}

int32 Router::solidWalkAnimator(WalkData *walkAnim) {
      /*********************************************************************
       * SolidWalk creates an animation based on whole steps with no sliding
       * to get as near as possible to the target without any sliding. This
       * routine is is intended for use when just clicking about.
       *
       * produce a module list from the line data
       *
       * returns 0 if solid route not found
       *********************************************************************/

      int32 left;
      int32 lastDir;
      int32 currentDir;
      int32 turnDir;
      int32 scale;
      int32 step;
      int32 module;
      int32 moduleX;
      int32 moduleY;
      int32 module16X;
      int32 module16Y;
      int32 errorX;
      int32 errorY;
      int32 moduleEnd;
      int32 slowStart;
      int32 stepCount;
      int32 lastCount;
      int32 frame;

      // start at the begining for a change
      lastDir = _modularPath[0].dir;
      currentDir = _modularPath[1].dir;
      module =    _framesPerChar + lastDir;
      moduleX = _startX;
      moduleY = _startY;
      module16X = moduleX << 16;
      module16Y = moduleY << 16;
      slowStart = 0;
      stepCount = 0;

      //****************************************************************************
      // SOLID
      // START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
      // BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
      //****************************************************************************
      walkAnim[stepCount].frame = module;
      walkAnim[stepCount].step = 0;
      walkAnim[stepCount].dir = lastDir;
      walkAnim[stepCount].x = moduleX;
      walkAnim[stepCount].y = moduleY;
      stepCount += 1;

      //****************************************************************************
      // SOLID
      // TURN TO START THE WALK
      //****************************************************************************
      // rotate if we need to
      if (lastDir != currentDir) {
            // get the direction to turn
            turnDir = currentDir - lastDir;
            if ( turnDir < 0)
                        turnDir += NO_DIRECTIONS;

            if (turnDir > 4)
                  turnDir = -1;
            else if (turnDir > 0)
                  turnDir = 1;

            // rotate to new walk direction
            // for george and nico put in a head turn at the start
            if ((megaId == GEORGE) || (megaId == NICO)) {
                  if ( turnDir < 0) {     // new frames for turn frames 29oct95jps
                        module =    turnFramesLeft + lastDir;
                  } else {
                        module =    turnFramesRight + lastDir;
                  }
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }

            // rotate till were facing new dir then go back 45 degrees
            while (lastDir != currentDir) {
                  lastDir += turnDir;
                  if ( turnDir < 0) {     // new frames for turn frames 29oct95jps
                        if ( lastDir < 0)
                              lastDir += NO_DIRECTIONS;
                        module =    turnFramesLeft + lastDir;
                  } else {
                        if ( lastDir > 7)
                              lastDir -= NO_DIRECTIONS;
                        module =    turnFramesRight + lastDir;
                  }
                  walkAnim[stepCount].frame = module;
                  walkAnim[stepCount].step = 0;
                  walkAnim[stepCount].dir = lastDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }
            // the back 45 degrees bit
            stepCount -= 1;// step back one because new head turn for george takes us past the new dir
      }

      //****************************************************************************
      // SOLID
      // THE SLOW IN
      //****************************************************************************

      // do start frames if its george and left or right
      if (megaId == GEORGE) {
            if (_modularPath[1].num > 0) {
                  if (currentDir == 2) { // only for george
                        slowStart = 1;
                        walkAnim[stepCount].frame = 296;
                        walkAnim[stepCount].step = 0;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                        walkAnim[stepCount].frame = 297;
                        walkAnim[stepCount].step = 0;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                        walkAnim[stepCount].frame = 298;
                        walkAnim[stepCount].step = 0;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                  } else if (currentDir == 6) { // only for george
                        slowStart = 1;
                        walkAnim[stepCount].frame = 299;
                        walkAnim[stepCount].step = 0;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                        walkAnim[stepCount].frame = 300;
                        walkAnim[stepCount].step = 0;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                        walkAnim[stepCount].frame = 301;
                        walkAnim[stepCount].step = 0;
                        walkAnim[stepCount].dir = currentDir;
                        walkAnim[stepCount].x = moduleX;
                        walkAnim[stepCount].y = moduleY;
                        stepCount += 1;
                  }
            }
      }
      //****************************************************************************
      // SOLID
      // THE WALK
      //****************************************************************************

      if (currentDir > 4)
            left = _framesPerStep;
      else
            left = 0;

      lastCount = stepCount;
      lastDir = 99;// this ensures that we don't put in turn frames for the start
      currentDir = 99;// this ensures that we don't put in turn frames for the start

      int32 p;

       for (p = 1; _modularPath[p].dir < NO_DIRECTIONS; ++p) {
            while (_modularPath[p].num > 0) {
                  currentDir = _modularPath[p].dir;
                  if (currentDir < NO_DIRECTIONS) {

                        module =    currentDir * _framesPerStep * 2 + left;
                        if (left == 0)
                              left = _framesPerStep;
                        else
                              left = 0;
                        moduleEnd = module + _framesPerStep;
                        step = 0;
                        scale = (_scaleA * moduleY + _scaleB);
                        do {
                              module16X += _dx[module]*scale;
                              module16Y += _dy[module]*scale;
                              moduleX = module16X >> 16;
                              moduleY = module16Y >> 16;
                              walkAnim[stepCount].frame = module;
                              walkAnim[stepCount].step = step;
                              walkAnim[stepCount].dir = currentDir;
                              walkAnim[stepCount].x = moduleX;
                              walkAnim[stepCount].y = moduleY;
                              stepCount += 1;
                              module += 1;
                              step += 1;
                        } while ( module < moduleEnd) ;
                        errorX = _modularPath[p].x -  moduleX;
                        errorX = errorX * _modX[_modularPath[p].dir];
                        errorY = _modularPath[p].y -  moduleY;
                        errorY = errorY * _modY[_modularPath[p].dir];
                        if ((errorX < 0) || (errorY < 0)) {
                              _modularPath[p].num = 0;
                              stepCount -= _framesPerStep;
                              if (left == 0)
                                    left = _framesPerStep;
                              else
                                    left = 0;
                              // Okay this is the end of a section
                              moduleX = walkAnim[stepCount-1].x;
                              moduleY =   walkAnim[stepCount-1].y;
                              module16X = moduleX << 16;
                              module16Y = moduleY << 16;
                              _modularPath[p].x =moduleX;
                              _modularPath[p].y =moduleY;
                              // Now is the time to put in the turn frames for the last turn
                              if ((stepCount - lastCount) < _framesPerStep) { // no step taken
                                    currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
                                    if (slowStart == 1) { // clean up if a slow in but no walk
                                          stepCount -= 3;
                                          lastCount -= 3;
                                          slowStart = 0;
                                    }
                              }
                              // check each turn condition in turn
                              if (((lastDir != 99) && (currentDir != 99)) && (megaId == GEORGE)) { // only for george
                                    lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
                                    if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6))) {
                                          // turn at the end of the last walk
                                          frame = lastCount - _framesPerStep;
                                          do {
                                                walkAnim[frame].frame += 104;//turning left
                                                frame += 1;
                                          } while (frame < lastCount );
                                    }
                                    if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6))) {
                                          // turn at the end of the current walk
                                          frame = lastCount - _framesPerStep;
                                          do {
                                                walkAnim[frame].frame += 200; //was 60 now 116
                                                frame += 1;
                                          } while (frame < lastCount );
                                    }
                              }
                              // all turns checked
                              lastCount = stepCount;
                        }
                  }
            }
            lastDir = currentDir;
            slowStart = 0; //can only be valid first time round
      }

      //****************************************************************************
      // SOLID
      // THE SLOW OUT
      //****************************************************************************

      if ((currentDir == 2) && (megaId == GEORGE)) { // only for george
            // place stop frames here
            // slowdown at the end of the last walk
            frame = lastCount - _framesPerStep;
            if (walkAnim[frame].frame == 24) {
                  do {
                        walkAnim[frame].frame += 278;//stopping right
                        frame += 1;
                  } while (frame < lastCount );
                  walkAnim[stepCount].frame = 308;
                  walkAnim[stepCount].step = 7;
                  walkAnim[stepCount].dir = currentDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            } else if (walkAnim[frame].frame == 30) {
                  do {
                        walkAnim[frame].frame += 279;//stopping right
                        frame += 1;
                  } while (frame < lastCount );
                  walkAnim[stepCount].frame = 315;
                  walkAnim[stepCount].step = 7;
                  walkAnim[stepCount].dir = currentDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }
      } else if ((currentDir == 6) && (megaId == GEORGE)) { // only for george
            // place stop frames here
            // slowdown at the end of the last walk
            frame = lastCount - _framesPerStep;
            if (walkAnim[frame].frame == 72) {
                  do {
                        walkAnim[frame].frame += 244;//stopping left
                        frame += 1;
                  } while (frame < lastCount );
                  walkAnim[stepCount].frame = 322;
                  walkAnim[stepCount].step = 7;
                  walkAnim[stepCount].dir = currentDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            } else if (walkAnim[frame].frame == 78) {
                  do {
                        walkAnim[frame].frame += 245;//stopping left
                        frame += 1;
                  } while (frame < lastCount );
                  walkAnim[stepCount].frame = 329;
                  walkAnim[stepCount].step = 7;
                  walkAnim[stepCount].dir = currentDir;
                  walkAnim[stepCount].x = moduleX;
                  walkAnim[stepCount].y = moduleY;
                  stepCount += 1;
            }
      }
      module =    _framesPerChar + _modularPath[p-1].dir;
      walkAnim[stepCount].frame = module;
      walkAnim[stepCount].step = 0;
      walkAnim[stepCount].dir = _modularPath[p-1].dir;
      walkAnim[stepCount].x = moduleX;
      walkAnim[stepCount].y = moduleY;
      stepCount += 1;

      walkAnim[stepCount].frame = 512;
      stepCount += 1;
      walkAnim[stepCount].frame = 512;
      stepCount += 1;
      walkAnim[stepCount].frame = 512;

      //****************************************************************************
      // SOLID
      // NO END TURNS
      //****************************************************************************

      debug(5, "routeFinder RouteSize is %d", stepCount);
      // now check the route

      for (int i = 0; i < p - 1; ++i) {
            if (!check(_modularPath[i].x, _modularPath[i].y, _modularPath[i + 1].x, _modularPath[i + 1].y))
                  p = 0;
      }

      if (p != 0) {
            _targetDir = _modularPath[p - 1].dir;
            if (checkTarget(moduleX, moduleY) == 3) {
                  // new target on a line
                  p = 0;
                  debug(5, "Solid walk target was on a line %d %d", moduleX, moduleY);
            }
      }

      return p;
}

// ****************************************************************************
// * THE SCAN ROUTINES
// ****************************************************************************

bool Router::scan(int32 level) {
      /*********************************************************************
       * Called successively from routeFinder   until no more changes take
       * place in the grid array, ie he best path has been found
       *
       * Scans through every point in the node array and checks if there is
       * a route between each point and if this route gives a new route.
       *
       * This routine could probably halve its processing time if it doubled
       * up on the checks after each route check
       *
       *********************************************************************/

      int32 x1, y1, x2, y2;
      int32 distance;
      bool changed = false;

      // For all the nodes that have new values and a distance less than
      // enddist, ie dont check for new routes from a point we checked
      // before or from a point that is already further away than the best
      // route so far.

      for (int i = 0; i < _nNodes; i++) {
            if (_node[i].dist < _node[_nNodes].dist && _node[i].level == level) {
                  x1 = _node[i].x;
                  y1 = _node[i].y;

                  for (int j = _nNodes; j > 0; j--) {
                        if (_node[j].dist > _node[i].dist) {
                              x2 = _node[j].x;
                              y2 = _node[j].y;

                              if (ABS(x2 - x1) > 4.5 * ABS(y2 - y1))
                                    distance = (8 * ABS(x2 - x1) + 18 * ABS(y2 - y1)) / (54 * 8) + 1;
                              else
                                    distance = (6 * ABS(x2 - x1) + 36 * ABS(y2 - y1)) / (36 * 14) + 1;

                              if (distance + _node[i].dist < _node[_nNodes].dist && distance + _node[i].dist < _node[j].dist) {
                                    if (newCheck(0, x1, y1, x2, y2)) {
                                          _node[j].level = level + 1;
                                          _node[j].dist = distance + _node[i].dist;
                                          _node[j].prev = i;
                                          changed = true;
                                    }
                              }
                        }
                  }
            }
      }

      return changed;
}


int32 Router::newCheck(int32 status, int32 x1 , int32 y1 , int32 x2 ,int32 y2) {
      /*********************************************************************
       * newCheck routine checks if the route between two points can be
       * achieved without crossing any of the bars in the Bars array.
       *
       * newCheck differs from check in that that 4 route options are
       * considered corresponding to actual walked routes.
       *
       * Note distance doesnt take account of shrinking ???
       *
       * Note Bars array must be properly calculated ie min max dx dy co
       *********************************************************************/

      int32 ldx;
      int32 ldy;
      int32 dlx;
      int32 dly;
      int32 dirX;
      int32 dirY;
      int32 step1;
      int32 step2;
      int32 step3;
      int32 steps;
      int32 options;

      steps = 0;
      options = 0;
      ldx = x2 - x1;
      ldy = y2 - y1;
      dirX = 1;
      dirY = 1;

      if (ldx < 0) {
            ldx = -ldx;
            dirX = -1;
      }

      if (ldy < 0) {
            ldy = -ldy;
            dirY = -1;
      }

      // make the route options

      if (_diagonaly * ldx > _diagonalx * ldy) {
            // dir  = 1,2 or 2,3 or 5,6 or 6,7

            dly = ldy;
            dlx = (ldy * _diagonalx) / _diagonaly;
            ldx = ldx - dlx;
            dlx = dlx * dirX;
            dly = dly * dirY;
            ldx = ldx * dirX;
            ldy = 0;

            // options are square, diagonal a code 1 route
            step1 = check(x1, y1, x1 + ldx, y1);
            if (step1 != 0) {
                  step2 = check(x1 + ldx, y1, x2, y2);
                  if (step2 != 0) {
                        steps = step1 + step2;
                        options |= 2;
                  }
            }

            // diagonal, square a code 2 route
            if (steps == 0 || status == 1) {
                  step1 = check(x1, y1, x1 + dlx, y1 + dly);
                  if (step1 != 0) {
                        step2 = check(x1 + dlx, y2, x2, y2);
                        if (step2 != 0) {
                              steps = step1 + step2;
                              options |= 4;
                        }
                  }
            }

            // halfsquare, diagonal, halfsquare a code 0 route
            if (steps == 0 || status == 1) {
                  step1 = check(x1, y1, x1 + ldx / 2, y1);
                  if (step1 != 0) {
                        step2 = check(x1 + ldx / 2, y1, x1 + ldx / 2 + dlx, y2);
                        if (step2 != 0) {
                              step3 = check(x1 + ldx / 2 + dlx, y2, x2, y2);
                              if (step3 != 0)   {
                                    steps = step1 + step2 + step3;
                                    options |= 1;
                              }
                        }
                  }
            }

            // halfdiagonal, square, halfdiagonal a code 3 route
            if (steps == 0 || status == 1) {
                  step1 = check(x1, y1, x1 + dlx / 2, y1 + dly / 2);
                  if (step1 != 0) {
                        step2 = check(x1 + dlx / 2, y1 + dly / 2, x1 + ldx + dlx / 2, y1 + dly / 2);
                        if (step2 != 0) {
                              step3 = check(x1 + ldx + dlx / 2, y1 + dly / 2, x2, y2);
                              if (step3 != 0) {
                                    steps = step1 + step2 + step3;
                                    options |= 8;
                              }
                        }
                  }
            }
      } else {
            // dir  = 7,0 or 0,1 or 3,4 or 4,5

            dlx = ldx;
            dly = (ldx * _diagonaly) / _diagonalx;
            ldy = ldy - dly;
            dlx = dlx * dirX;
            dly = dly * dirY;
            ldy = ldy * dirY;
            ldx = 0;

            // options are square, diagonal a code 1 route
            step1 = check(x1 ,y1, x1, y1 + ldy);
            if (step1 != 0)   {
                  step2 = check(x1, y1 + ldy, x2, y2);
                  if (step2 != 0) {
                        steps = step1 + step2;
                        options |= 2;
                  }
            }

            // diagonal, square a code 2 route
            if (steps == 0 || status == 1) {
                  step1 = check(x1, y1, x2, y1 + dly);
                  if (step1 != 0) {
                        step2 = check(x2, y1 + dly, x2, y2);
                        if (step2 != 0) {
                              steps = step1 + step2;
                              options |= 4;
                        }
                  }
            }

            // halfsquare, diagonal, halfsquare a code 0 route
            if (steps == 0 || status == 1) {
                  step1 = check(x1, y1, x1, y1 + ldy / 2);
                  if (step1 != 0) {
                        step2 = check(x1, y1 + ldy / 2, x2, y1 + ldy / 2 + dly);
                        if (step2 != 0) {
                              step3 = check(x2, y1 + ldy / 2 + dly, x2, y2);
                              if (step3 != 0) {
                                    steps = step1 + step2 + step3;
                                    options |= 1;
                              }
                        }
                  }
            }

            // halfdiagonal, square, halfdiagonal a code 3 route
            if (steps == 0 || status == 1) {
                  step1 = check(x1, y1, x1 + dlx / 2, y1 + dly / 2);
                  if (step1 != 0) {
                        step2 = check(x1 + dlx / 2, y1 + dly / 2, x1 + dlx / 2, y1 + ldy + dly / 2);
                        if (step2 != 0) {
                              step3 = check(x1 + dlx / 2, y1 + ldy + dly / 2, x2, y2);
                              if (step3 != 0)   {
                                    steps = step1 + step2 + step3;
                                    options |= 8;
                              }
                        }
                  }
            }
      }

      if (status == 0)
            status = steps;
      else
            status = options;

      return status;
}

// ****************************************************************************
// * CHECK ROUTINES
// ****************************************************************************

bool Router::check(int32 x1, int32 y1, int32 x2, int32 y2) {
      // call the fastest line check for the given line
      // returns true if line didn't cross any bars

      if (x1 == x2 && y1 == y2)
            return true;

      if (x1 == x2)
            return vertCheck(x1, y1, y2);

      if (y1 == y2)
            return horizCheck(x1, y1, x2);

      return lineCheck(x1, y1, x2, y2);
}

bool Router::lineCheck(int32 x1, int32 y1, int32 x2, int32 y2) {
      bool linesCrossed = true;

      int32 xmin = MIN(x1, x2);
      int32 xmax = MAX(x1, x2);
      int32 ymin = MIN(y1, y2);
      int32 ymax = MAX(y1, y2);

      // Line set to go one step in chosen direction so ignore if it hits
      // anything

      int32 dirx = x2 - x1;
      int32 diry = y2 - y1;

      int32 co = (y1 * dirx) - (x1 * diry);           // new line equation

      for (int i = 0; i < _nBars && linesCrossed; i++) {
            // skip if not on module
            if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax && ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
                  // Okay, it's a valid line. Calculate an intercept. Wow
                  // but all this arithmetic we must have loads of time

                  // slope it he slope between the two lines
                  int32 slope = (_bars[i].dx * diry) - (_bars[i].dy *dirx);
                  // assuming parallel lines don't cross
                  if (slope != 0) {
                        // calculate x intercept and check its on both
                        // lines
                        int32 xc = ((_bars[i].co * dirx) - (co * _bars[i].dx)) / slope;

                        // skip if not on module
                        if (xc >= xmin - 1 && xc <= xmax + 1) {
                              // skip if not on line
                              if (xc >= _bars[i].xmin - 1 && xc <= _bars[i].xmax + 1) {
                                    int32 yc = ((_bars[i].co * diry) - (co * _bars[i].dy)) / slope;

                                    // skip if not on module
                                    if (yc >= ymin - 1 && yc <= ymax + 1) {
                                          // skip if not on line
                                          if (yc >= _bars[i].ymin - 1 && yc <= _bars[i].ymax + 1) {
                                                linesCrossed = false;
                                          }
                                    }
                              }
                        }
                  }
            }
      }

      return linesCrossed;
}

bool Router::horizCheck(int32 x1, int32 y, int32 x2) {
      bool linesCrossed = true;

      int32 xmin = MIN(x1, x2);
      int32 xmax = MAX(x1, x2);

      // line set to go one step in chosen direction so ignore if it hits
      // anything

      for (int i = 0; i < _nBars && linesCrossed; i++) {
            // skip if not on module
            if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax && y >= _bars[i].ymin && y <= _bars[i].ymax) {
                  // Okay, it's a valid line calculate an intercept. Wow
                  // but all this arithmetic we must have loads of time

                  if (_bars[i].dy == 0)
                        linesCrossed = false;
                  else {
                        int32 ldy = y - _bars[i].y1;
                        int32 xc = _bars[i].x1 + (_bars[i].dx * ldy) / _bars[i].dy;
                        // skip if not on module
                        if (xc >= xmin - 1 && xc <= xmax + 1)
                              linesCrossed = false;
                  }
            }
      }

      return linesCrossed;
}

bool Router::vertCheck(int32 x, int32 y1, int32 y2) {
      bool linesCrossed = true;

      int32 ymin = MIN(y1, y2);
      int32 ymax = MAX(y1, y2);

      // Line set to go one step in chosen direction so ignore if it hits
      // anything

      for (int i = 0; i < _nBars && linesCrossed; i++) {
            // skip if not on module
            if (x >= _bars[i].xmin && x <= _bars[i].xmax && ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
                  // Okay, it's a valid line calculate an intercept. Wow
                  // but all this arithmetic we must have loads of time

                  // both lines vertical and overlap in x and y so they
                  // cross

                  if (_bars[i].dx == 0)
                        linesCrossed = false;
                  else {
                        int32 ldx = x - _bars[i].x1;
                        int32 yc = _bars[i].y1 + (_bars[i].dy * ldx) / _bars[i].dx;
                        // the intercept overlaps
                        if (yc >= ymin - 1 && yc <= ymax + 1)
                              linesCrossed = false;
                  }
            }
      }

      return linesCrossed;
}

int32 Router::checkTarget(int32 x, int32 y) {
      int32 onLine = 0;

      int32 xmin = x - 1;
      int32 xmax = x + 1;
      int32 ymin = y - 1;
      int32 ymax = y + 1;

      // check if point +- 1 is on the line
      // so ignore if it hits anything

      for (int i = 0; i < _nBars && onLine == 0; i++) {
            // overlapping line
            if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax && ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
                  int32 xc, yc;

                  // okay this line overlaps the target calculate an y intercept for x

                  // vertical line so we know it overlaps y
                  if (_bars[i].dx == 0)
                        yc = 0;
                  else {
                        int ldx = x - _bars[i].x1;
                        yc = _bars[i].y1 + (_bars[i].dy * ldx) / _bars[i].dx;
                  }

                  // overlapping point for y
                  if (yc >= ymin && yc <= ymax) {
                        // target on a line so drop out
                        onLine = 3;
                        debug(5, "RouteFail due to target on a line %d %d", x, y);
                  } else {
                        // vertical line so we know it overlaps y
                        if (_bars[i].dy == 0)
                              xc = 0;
                        else {
                              int32 ldy = y - _bars[i].y1;
                              xc = _bars[i].x1 + (_bars[i].dx * ldy) / _bars[i].dy;
                        }

                        // skip if not on module
                        if (xc >= xmin && xc <= xmax) {
                              // target on a line so drop out
                              onLine = 3;
                              debug(5, "RouteFail due to target on a line %d %d", x, y);
                        }
                  }
            }
      }

      return onLine;
}

// ****************************************************************************
// * THE SETUP ROUTINES
// ****************************************************************************

int32 Router::LoadWalkResources(Object *megaObject, int32 x, int32 y, int32 dir) {
      WalkGridHeader    floorHeader;
      int32       i;
      uint8  *fPolygrid;
      uint8  *fMegaWalkData;

      int32       floorId;
      int32       walkGridResourceId;
      Object *floorObject;

      int32  cnt;
      uint32 cntu;

      // load in floor grid for current mega

      floorId = megaObject->o_place;

      //floorObject = (object *) Lock_object(floorId);
      floorObject = _objMan->fetchObject(floorId);
      walkGridResourceId = floorObject->o_resource;
      //Unlock_object(floorId);

      //ResOpen(walkGridResourceId);                  // mouse wiggle
      //fPolygrid = ResLock(walkGridResourceId);                  // mouse wiggle
      fPolygrid = (uint8*)_resMan->openFetchRes(walkGridResourceId);


      fPolygrid += sizeof(Header);
      memcpy(&floorHeader,fPolygrid,sizeof(WalkGridHeader));
      fPolygrid += sizeof(WalkGridHeader);
      _nBars = _resMan->getUint32(floorHeader.numBars);

      if (_nBars >= O_GRID_SIZE) {
            #ifdef DEBUG                                                                        //check for id > number in file,
            error("RouteFinder Error too many _bars %d", _nBars);
            #endif
            _nBars = 0;
      }

      _nNodes = _resMan->getUint32(floorHeader.numNodes)+1; //array starts at 0     begins at a start _node has nnodes nodes and a target _node

      if (_nNodes >= O_GRID_SIZE) {
            #ifdef DEBUG                                                                        //check for id > number in file,
                  error("RouteFinder Error too many nodes %d", _nNodes);
            #endif
            _nNodes = 0;
      }

      /*memmove(&_bars[0],fPolygrid,_nBars*sizeof(BarData));
      fPolygrid += _nBars*sizeof(BarData);//move pointer to start of _node data*/
      for (cnt = 0; cnt < _nBars; cnt++) {
            _bars[cnt].x1   = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].y1   = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].x2   = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].y2   = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].xmin = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].ymin = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].xmax = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].ymax = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].dx   = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].dy   = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _bars[cnt].co   = _resMan->readUint32(fPolygrid); fPolygrid += 4;
      }

      /*j = 1;// leave _node 0 for start _node
      do {
            memmove(&_node[j].x,fPolygrid,2*sizeof(int16));
            fPolygrid += 2*sizeof(int16);
            j ++;
      } while (j < _nNodes);//array starts at 0*/
      for (cnt = 1; cnt < _nNodes; cnt++) {
            _node[cnt].x = _resMan->readUint16(fPolygrid); fPolygrid += 2;
            _node[cnt].y = _resMan->readUint16(fPolygrid); fPolygrid += 2;
      }

      //ResUnlock(walkGridResourceId);                // mouse wiggle
      //ResClose(walkGridResourceId);                 // mouse wiggle
      _resMan->resClose(walkGridResourceId);


      // floor grid loaded

// copy the mega structure into the local variables for use in all subroutines

      _startX = megaObject->o_xcoord;
      _startY = megaObject->o_ycoord;
      _startDir = megaObject->o_dir;
      _targetX = x;
      _targetY= y;
      _targetDir = dir;

      _scaleA = megaObject->o_scale_a;
      _scaleB = megaObject->o_scale_b;

      //ResOpen(megaObject->o_mega_resource);               // mouse wiggle
      //fMegaWalkData = ResLock(megaObject->o_mega_resource);                 // mouse wiggle
      fMegaWalkData = (uint8*)_resMan->openFetchRes(megaObject->o_mega_resource);
      // Apparently this resource is in little endian in both the Mac and the PC version

      _nWalkFrames = fMegaWalkData[0];
      _nTurnFrames = fMegaWalkData[1];
      fMegaWalkData += 2;
      for (cnt = 0; cnt < NO_DIRECTIONS * (_nWalkFrames + 1 + _nTurnFrames); cnt++) {
            _dx[cnt] = (int32)_resMan->readLEUint32(fMegaWalkData);
            fMegaWalkData += 4;
      }
      for (cnt = 0; cnt < NO_DIRECTIONS * (_nWalkFrames + 1 + _nTurnFrames); cnt++) {
            _dy[cnt] = (int32)_resMan->readLEUint32(fMegaWalkData);
            fMegaWalkData += 4;
      }
      /*memmove(&_dx[0],fMegaWalkData,NO_DIRECTIONS*(_nWalkFrames+1+_nTurnFrames)*sizeof(int32));
      fMegaWalkData += NO_DIRECTIONS*(_nWalkFrames+1+_nTurnFrames)*sizeof(int32);
      memmove(&_dy[0],fMegaWalkData,NO_DIRECTIONS*(_nWalkFrames+1+_nTurnFrames)*sizeof(int32));
      fMegaWalkData += NO_DIRECTIONS*(_nWalkFrames+1+_nTurnFrames)*sizeof(int32);*/

      for (cntu = 0; cntu < NO_DIRECTIONS; cntu++) {
            _modX[cntu] = (int32)_resMan->readLEUint32(fMegaWalkData);
            fMegaWalkData += 4;
      }
      for (cntu = 0; cntu < NO_DIRECTIONS; cntu++) {
            _modY[cntu] = (int32)_resMan->readLEUint32(fMegaWalkData);
            fMegaWalkData += 4;
      }
      /*memmove(&_modX[0],fMegaWalkData,NO_DIRECTIONS*sizeof(int32));
      fMegaWalkData += NO_DIRECTIONS*sizeof(int32);
      memmove(&_modY[0],fMegaWalkData,NO_DIRECTIONS*sizeof(int32));
      fMegaWalkData += NO_DIRECTIONS*sizeof(int32);*/

      //ResUnlock(megaObject->o_mega_resource);             // mouse wiggle
      //ResClose(megaObject->o_mega_resource);              // mouse wiggle
      _resMan->resClose(megaObject->o_mega_resource);

      _diagonalx =  _modX[3] ;//36
      _diagonaly =  _modY[3] ;//8

// mega data ready

// finish setting grid by putting mega _node at begining
// and target _node at end    and reset current values
      _node[0].x = _startX;
      _node[0].y = _startY;
      _node[0].level = 1;
      _node[0].prev = 0;
      _node[0].dist = 0;
      i=1;
      do {
            _node[i].level = 0;
            _node[i].prev = 0;
            _node[i].dist = 9999;
            i=i+1;
      } while (i < _nNodes);
      _node[_nNodes].x = _targetX;
      _node[_nNodes].y = _targetY;
      _node[_nNodes].level = 0;
      _node[_nNodes].prev = 0;
      _node[_nNodes].dist = 9999;

      return 1;
}

// ****************************************************************************
// * THE ROUTE EXTRACTOR
// ****************************************************************************

void Router::extractRoute() {
      /*********************************************************************
       * extractRoute gets route from the node data after a full scan, route
       * is written with just the basic way points and direction options for
       * heading to the next point.
       *********************************************************************/

      int32 prev;
      int32 prevx;
      int32 prevy;
      int32 last;
      int32 point;
      int32 dirx;
      int32 diry;
      int32 dir;
      int32 ldx;
      int32 ldy;
      int32 p;

      // extract the route from the _node data
      prev = _nNodes;
      last = prev;
      point = O_ROUTE_SIZE - 1;
      _route[point].x = _node[last].x;
      _route[point].y = _node[last].y;

      do {
            point--;
            prev = _node[last].prev;
            prevx = _node[prev].x;
            prevy = _node[prev].y;
            _route[point].x = prevx;
            _route[point].y = prevy;
            last = prev;
      } while (prev > 0);

      // now shuffle route down in the buffer
      _routeLength = 0;

      do {
            _route[_routeLength].x = _route[point].x;
            _route[_routeLength].y = _route[point].y;
            point++;
            _routeLength++;
      } while (point < O_ROUTE_SIZE);

      _routeLength--;

      // okay the route exists as a series point now put in some directions
      for (p = 0; p < _routeLength; ++p) {
            ldx = _route[p + 1].x - _route[p].x;
            ldy = _route[p + 1].y - _route[p].y;
            dirx = 1;
            diry = 1;

            if (ldx < 0) {
                  ldx = -ldx;
                  dirx = -1;
            }

            if (ldy < 0) {
                  ldy = -ldy;
                  diry = -1;
            }

            if (_diagonaly * ldx > _diagonalx * ldy) {
                  // dir  = 1,2 or 2,3 or 5,6 or 6,7

                  // 2 or 6
                  dir = 4 - 2 * dirx;
                  _route[p].dirS = dir;

                  // 1, 3, 5 or 7
                  dir = dir + diry * dirx;
                  _route[p].dirD = dir;
            } else {
                  // dir  = 7,0 or 0,1 or 3,4 or 4,5

                  // 0 or 4
                  dir = 2 + 2 * diry;
                  _route[p].dirS = dir;

                  // 2 or 6
                  dir = 4 - 2 * dirx;

                  // 1, 3, 5 or 7
                  dir = dir + diry * dirx;
                  _route[p].dirD = dir;
            }
      }

      // set the last dir to continue previous route unless specified
      if (_targetDir == NO_DIRECTIONS) {
            // ANY direction
            _route[p].dirS = _route[p - 1].dirS;
            _route[p].dirD = _route[p - 1].dirD;
      } else {
            _route[p].dirS = _targetDir;
            _route[p].dirD = _targetDir;
      }
      return;
}

#define DIAGONALX 36
#define DIAGONALY 8
int whatTarget(int32 startX, int32 startY, int32 destX, int32 destY) {
      int tar_dir;
//setting up
      int deltaX = destX-startX;
      int deltaY = destY-startY;
      int signX = (deltaX > 0);
      int signY = (deltaY > 0);
      int   slope;

      if ( (ABS(deltaY) * DIAGONALX ) < (ABS(deltaX) * DIAGONALY / 2))
            slope = 0;// its flat
      else if ( (ABS(deltaY) * DIAGONALX / 2) > (ABS(deltaX) * DIAGONALY ) )
            slope = 2;// its vertical
      else
            slope = 1;// its diagonal

      if (slope == 0) { //flat
            if (signX == 1)   // going right
                  tar_dir = 2;
            else
                  tar_dir = 6;
      } else if (slope == 2) { //vertical
            if (signY == 1)   // going down
                  tar_dir = 4;
            else
                  tar_dir = 0;
      } else if (signX == 1) { //right diagonal
            if (signY == 1)   // going down
                  tar_dir = 3;
            else
                  tar_dir = 1;
      } else { //left diagonal
            if (signY == 1)   // going down
                  tar_dir = 5;
            else
                  tar_dir = 7;
      }
      return tar_dir;
}

void Router::setPlayerTarget(int32 x, int32 y, int32 dir, int32 stance) {
      _playerTargetX = x;
      _playerTargetY = y;
      _playerTargetDir = dir;
      _playerTargetStance = stance;
}

} // End of namespace Sword1

Generated by  Doxygen 1.6.0   Back to index