Logo Search packages:      
Sourcecode: scummvm version File versions  Download package

sound_2gs.cpp

/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * $URL: https://scummvm.svn.sourceforge.net/svnroot/scummvm/scummvm/tags/release-1-2-0/engines/agi/sound_2gs.cpp $
 * $Id: sound_2gs.cpp 49758 2010-06-15 10:38:39Z sev $
 *
 */

#include "common/config-manager.h"
#include "common/fs.h"
#include "common/md5.h"
#include "common/str-array.h"

#include "agi/agi.h"
#include "agi/sound_2gs.h"

namespace Agi {

SoundGen2GS::SoundGen2GS(AgiEngine *vm, Audio::Mixer *pMixer) : SoundGen(vm, pMixer) {
      _disabledMidi = !loadInstruments();

      _playingSound = -1;
      _playing = false;

      _sndBuffer = (int16 *)calloc(2, BUFFER_SIZE);

      _midiChannels.resize(16); // Set the amount of available MIDI channels

      _mixer->playStream(Audio::Mixer::kMusicSoundType, &_soundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true);
}

SoundGen2GS::~SoundGen2GS() {
      _mixer->stopHandle(_soundHandle);

      free(_sndBuffer);
}

int SoundGen2GS::readBuffer(int16 *buffer, const int numSamples) {
      fillAudio(buffer, numSamples / 2);
      
      return numSamples;
}

void SoundGen2GS::play(int resnum) {
      AgiSoundEmuType type;

      _playingSound = resnum;

      type = (AgiSoundEmuType)_vm->_game.sounds[resnum]->type();

      assert (type == AGI_SOUND_SAMPLE || type == AGI_SOUND_MIDI);

      switch (type) {
      case AGI_SOUND_SAMPLE: {
            IIgsSample *sampleRes = (IIgsSample *) _vm->_game.sounds[_playingSound];
            playSampleSound(sampleRes->getHeader(), sampleRes->getSample());
            break;
      }
      case AGI_SOUND_MIDI:
            ((IIgsMidi *) _vm->_game.sounds[_playingSound])->rewind();
            break;
      default:
            break;
      }
}

void SoundGen2GS::stop() {
      _playingSound = -1;

      // Stops all sounds on all MIDI channels
      for (iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); ++iter)
            iter->stopSounds();
}

void SoundGen2GS::playSound() {
      if (_playingSound == -1)
            return;

      if (_vm->_game.sounds[_playingSound]->type() == AGI_SOUND_MIDI) {
            playMidiSound();
            //warning("playSound: Trying to play an Apple IIGS MIDI sound. Not yet implemented");
      } else if (_vm->_game.sounds[_playingSound]->type() == AGI_SOUND_SAMPLE) {
            //debugC(3, kDebugLevelSound, "playSound: Trying to play an Apple IIGS sample");
            playSampleSound();
      }

      if (!_playing) {
            _vm->_sound->soundIsFinished();

            _playingSound = -1;
      }
}

uint32 SoundGen2GS::mixSound() {
      int i, b;

      memset(_sndBuffer, 0, BUFFER_SIZE << 1);

      if (!_playing || _playingSound == -1)
            return BUFFER_SIZE;

      // Handle Apple IIGS sound mixing here
      // TODO: Implement playing both waves in an oscillator
      // TODO: Implement swap-mode in an oscillator
      for (uint midiChan = 0; midiChan < _midiChannels.size(); midiChan++) {
            for (uint gsChan = 0; gsChan < _midiChannels[midiChan]._gsChannels.size(); gsChan++) {
                  IIgsChannelInfo &channel = _midiChannels[midiChan]._gsChannels[gsChan];
                  if (channel.playing()) { // Only mix in actively playing channels
                        // Frequency multiplier was 1076.0 based on tests made with MESS 0.117.
                        // Tests made with KEGS32 averaged the multiplier to around 1045.
                        // So this is a guess but maybe it's 1046.5... i.e. C6's frequency?
                        double hertz = C6_FREQ * pow(SEMITONE, fracToDouble(channel.note));
                        channel.posAdd = doubleToFrac(hertz / getRate());
                        channel.vol = doubleToFrac(fracToDouble(channel.envVol) * fracToDouble(channel.chanVol) / 127.0);
                        double tempVol = fracToDouble(channel.vol)/127.0;
                        for (i = 0; i < IIGS_BUFFER_SIZE; i++) {
                              b = channel.relocatedSample[fracToInt(channel.pos)];
                              // TODO: Find out what volume/amplification setting is loud enough
                              //       but still doesn't clip when playing many channels on it.
                              _sndBuffer[i] += (int16) (b * tempVol * 256/4);
                              channel.pos += channel.posAdd;

                              if (channel.pos >= intToFrac(channel.size)) {
                                    if (channel.loop) {
                                          // Don't divide by zero on zero length samples
                                          channel.pos %= intToFrac(channel.size + (channel.size == 0));
                                          // Probably we should loop the envelope too
                                          channel.envSeg = 0;
                                          channel.envVol = channel.startEnvVol;
                                    } else {
                                          channel.pos = channel.chanVol = 0;
                                          channel.end = true;
                                          break;
                                    }
                              }
                        }

                        if (channel.envSeg < ENVELOPE_SEGMENT_COUNT) {
                              const IIgsEnvelopeSegment &seg = channel.ins->env.seg[channel.envSeg];
                              // I currently assume enveloping works with the same speed as the MIDI
                              // (i.e. with 1/60ths of a second ticks).
                              // TODO: Check if enveloping really works with the same speed as MIDI
                              frac_t envVolDelta = doubleToFrac(seg.inc/256.0);
                              if (intToFrac(seg.bp) >= channel.envVol) {
                                    channel.envVol += envVolDelta;
                                    if (channel.envVol >= intToFrac(seg.bp)) {
                                          channel.envVol = intToFrac(seg.bp);
                                          channel.envSeg += 1;
                                    }
                              } else {
                                    channel.envVol -= envVolDelta;
                                    if (channel.envVol <= intToFrac(seg.bp)) {
                                          channel.envVol = intToFrac(seg.bp);
                                          channel.envSeg += 1;
                                    }
                              }
                        }
                  }
            }
      }

      removeStoppedSounds();

      return IIGS_BUFFER_SIZE;
}

void SoundGen2GS::fillAudio(int16 *stream, uint len) {
      uint32 p = 0;

      // current number of audio bytes in _sndBuffer
      static uint32 data_available = 0;
      // offset of start of audio bytes in _sndBuffer
      static uint32 data_offset = 0;

      len <<= 2;

      debugC(5, kDebugLevelSound, "(%p, %d)", (void *)stream, len);

      while (len > data_available) {
            memcpy((uint8 *)stream + p, (uint8*)_sndBuffer + data_offset, data_available);
            p += data_available;
            len -= data_available;

            playSound();
            data_available = mixSound() << 1;
            data_offset = 0;
      }

      memcpy((uint8 *)stream + p, (uint8*)_sndBuffer + data_offset, len);
      data_offset += len;
      data_available -= len;
}

void SoundGen2GS::playSampleSound() {
      if (_vm->_soundemu != SOUND_EMU_APPLE2GS) {
            warning("Trying to play a sample but not using Apple IIGS sound emulation mode");
            return;
      }

      if (_playingSound != -1)
            _playing = activeSounds() > 0;
}

void SoundGen2GS::stopSounds() {
      // Stops all sounds on all MIDI channels
      for (iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); ++iter)
            iter->stopSounds();
}

bool SoundGen2GS::playSampleSound(const IIgsSampleHeader &sampleHeader, const int8 *sample) {
      stopSounds();
      IIgsMidiChannel &channel = _midiChannels[kSfxMidiChannel];

      channel.setInstrument(&sampleHeader.instrument, sample);
      channel.setVolume(sampleHeader.volume);
      channel.noteOn(sampleHeader.pitch, 64); // Use default velocity (i.e. 64)

      return true;
}

void SoundGen2GS::playMidiSound() {
      if (_disabledMidi)
            return;

      const uint8 *p;
      uint8 parm1, parm2;
      static uint8 cmd, ch;

      if (_playingSound == -1 || _vm->_game.sounds[_playingSound] == NULL) {
            warning("Error playing Apple IIGS MIDI sound resource");
            _playing = false;

            return;
      }

      IIgsMidi *midiObj = (IIgsMidi *) _vm->_game.sounds[_playingSound];

      _playing = true;
      p = midiObj->getPtr();

      midiObj->_soundBufTicks++;

      while (true) {
            uint8 readByte = *p;

            // Check for end of MIDI sequence marker (Can also be here before delta-time)
            if (readByte == MIDI_BYTE_STOP_SEQUENCE) {
                  debugC(3, kDebugLevelSound, "End of MIDI sequence (Before reading delta-time)");
                  _playing = false;

                  midiObj->rewind();

                  return;
            } else if (readByte == MIDI_BYTE_TIMER_SYNC) {
                  debugC(3, kDebugLevelSound, "Timer sync");
                  p++; // Jump over the timer sync byte as it's not needed

                  continue;
            }

            uint8 deltaTime = readByte;
            if (midiObj->_midiTicks + deltaTime > midiObj->_soundBufTicks) {
                  break;
            }
            midiObj->_midiTicks += deltaTime;
            p++; // Jump over the delta-time byte as it was already taken care of

            // Check for end of MIDI sequence marker (This time it after reading delta-time)
            if (*p == MIDI_BYTE_STOP_SEQUENCE) {
                  debugC(3, kDebugLevelSound, "End of MIDI sequence (After reading delta-time)");
                  _playing = false;

                  midiObj->rewind();

                  return;
            }

            // Separate byte into command and channel if it's a command byte.
            // Otherwise use running status (i.e. previously set command and channel).
            if (*p & 0x80) {
                  cmd = *p++;
                  ch = cmd & 0x0f;
                  cmd >>= 4;
            }

            switch (cmd) {
            case MIDI_CMD_NOTE_OFF:
                  parm1 = *p++;
                  parm2 = *p++;
                  midiNoteOff(ch, parm1, parm2);
                  break;
            case MIDI_CMD_NOTE_ON:
                  parm1 = *p++;
                  parm2 = *p++;
                  midiNoteOn(ch, parm1, parm2);
                  break;
            case MIDI_CMD_CONTROLLER:
                  parm1 = *p++;
                  parm2 = *p++;
                  midiController(ch, parm1, parm2);
                  break;
            case MIDI_CMD_PROGRAM_CHANGE:
                  parm1 = *p++;
                  midiProgramChange(ch, parm1);
                  break;
            case MIDI_CMD_PITCH_WHEEL:
                  parm1 = *p++;
                  parm2 = *p++;

                  uint16 wheelPos = ((parm2 & 0x7F) << 7) | (parm1 & 0x7F); // 14-bit value
                  midiPitchWheel(wheelPos);
                  break;
            }
      }

      midiObj->setPtr(p);
}

void SoundGen2GS::midiNoteOff(uint8 channel, uint8 note, uint8 velocity) {
      _midiChannels[channel].noteOff(note, velocity);
      debugC(3, kDebugLevelSound, "note off, channel %02x, note %02x, velocity %02x", channel, note, velocity);
}

void SoundGen2GS::midiNoteOn(uint8 channel, uint8 note, uint8 velocity) {
      _midiChannels[channel].noteOn(note, velocity);
      debugC(3, kDebugLevelSound, "note  on, channel %02x, note %02x, velocity %02x", channel, note, velocity);
}

// TODO: Check if controllers behave differently on different MIDI channels
// TODO: Doublecheck what other controllers than the volume controller do
void SoundGen2GS::midiController(uint8 channel, uint8 controller, uint8 value) {
      IIgsMidiChannel &midiChannel = _midiChannels[channel];

      // The tested Apple IIGS AGI MIDI resources only used
      // controllers 0 (Bank select?), 7 (Volume) and 64 (Sustain On/Off).
      // Controller 0's parameter was in range 94-127,
      // controller 7's parameter was in range 0-127 and
      // controller 64's parameter was always 0 (i.e. sustain off).
      bool unimplemented = false;
      switch (controller) {
      case 7: // Volume
            midiChannel.setVolume(value);
            break;
      default:
            unimplemented = true;
            break;
      }
      debugC(3, kDebugLevelSound, "controller %02x, ch %02x, val %02x%s", controller, channel, value, unimplemented ? " (Unimplemented)" : "");
}

void SoundGen2GS::midiProgramChange(uint8 channel, uint8 program) {
      _midiChannels[channel].setInstrument(getInstrument(program), _wave.begin());
      debugC(3, kDebugLevelSound, "program change %02x, channel %02x", program, channel);
}

void SoundGen2GS::midiPitchWheel(uint8 wheelPos) {
      // In all the tested Apple IIGS AGI MIDI resources
      // pitch wheel commands always used 0x2000 (Center position).
      // Therefore it should be quite safe to ignore this command.
      debugC(3, kDebugLevelSound, "pitch wheel position %04x (Unimplemented)", wheelPos);
}

const IIgsInstrumentHeader* SoundGen2GS::getInstrument(uint8 program) const {
      return &_instruments[_midiProgToInst->map(program)];
}

void SoundGen2GS::setProgramChangeMapping(const MidiProgramChangeMapping *mapping) {
      _midiProgToInst = mapping;
}

void SoundGen2GS::removeStoppedSounds() {
      for (Common::Array<IIgsMidiChannel>::iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); ++iter)
            iter->removeStoppedSounds();
}

uint SoundGen2GS::activeSounds() const {
      uint result = 0;

      for (Common::Array<IIgsMidiChannel>::const_iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); ++iter)
            result += iter->activeSounds();

      return result;
}

IIgsMidi::IIgsMidi(uint8 *data, uint32 len, int resnum, SoundMgr &manager) : AgiSound(manager) {
      _data = data; // Save the resource pointer
      _ptr = _data + 2; // Set current position to just after the header
      _len  = len;  // Save the resource's length
      _type = READ_LE_UINT16(data); // Read sound resource's type
      _midiTicks = _soundBufTicks = 0;
      _isValid = (_type == AGI_SOUND_MIDI) && (_data != NULL) && (_len >= 2);

      if (!_isValid) // Check for errors
            warning("Error creating Apple IIGS midi sound from resource %d (Type %d, length %d)", resnum, _type, len);
}

/**
 * Convert sample from 8-bit unsigned to 8-bit signed format.
 * @param source  Source stream containing the 8-bit unsigned sample data.
 * @param dest  Destination buffer for the 8-bit signed sample data.
 * @param length  Length of the sample data to be converted.
 */
00420 static bool convertWave(Common::SeekableReadStream &source, int8 *dest, uint length) {
      // Convert the wave from 8-bit unsigned to 8-bit signed format
      for (uint i = 0; i < length; i++)
            dest[i] = (int8) ((int) source.readByte() - 128);
      return !(source.eos() || source.err());
}

IIgsSample::IIgsSample(uint8 *data, uint32 len, int resnum, SoundMgr &manager) : AgiSound(manager) {
      Common::MemoryReadStream stream(data, len, DisposeAfterUse::YES);

      // Check that the header was read ok and that it's of the correct type
      if (_header.read(stream) && _header.type == AGI_SOUND_SAMPLE) { // An Apple IIGS AGI sample resource
            uint32 sampleStartPos = stream.pos();
            uint32 tailLen = stream.size() - sampleStartPos;

            if (tailLen < _header.sampleSize) { // Check if there's no room for the sample data in the stream
                  // Apple IIGS Manhunter I: Sound resource 16 has only 16074 bytes
                  // of sample data although header says it should have 16384 bytes.
                  warning("Apple IIGS sample (%d) too short (%d bytes. Should be %d bytes). Using the part that's left",
                        resnum, tailLen, _header.sampleSize);

                  _header.sampleSize = (uint16) tailLen; // Use the part that's left
            }

            if (_header.pitch > 0x7F) { // Check if the pitch is invalid
                  warning("Apple IIGS sample (%d) has too high pitch (0x%02x)", resnum, _header.pitch);

                  _header.pitch &= 0x7F; // Apple IIGS AGI probably did it this way too
            }

            // Finalize the header info using the 8-bit unsigned sample data
            _header.finalize(stream);

            // Convert sample data from 8-bit unsigned to 8-bit signed format
            stream.seek(sampleStartPos);
            _sample = new int8[_header.sampleSize];

            if (_sample != NULL)
                  _isValid = convertWave(stream, _sample, _header.sampleSize);
      }

      if (!_isValid) // Check for errors
            warning("Error creating Apple IIGS sample from resource %d (Type %d, length %d)", resnum, _header.type, len);
}

/** Reads an Apple IIGS envelope from then given stream. */
bool IIgsEnvelope::read(Common::SeekableReadStream &stream) {
      for (int segNum = 0; segNum < ENVELOPE_SEGMENT_COUNT; segNum++) {
            seg[segNum].bp  = stream.readByte();
            seg[segNum].inc = stream.readUint16LE();
      }

      return !(stream.eos() || stream.err());
}

/** Reads an Apple IIGS wave information structure from the given stream. */
bool IIgsWaveInfo::read(Common::SeekableReadStream &stream, bool ignoreAddr) {
      top  = stream.readByte();
      addr = stream.readByte() * 256;
      size = (1 << (stream.readByte() & 7)) * 256;

      // Read packed mode byte and parse it into parts
      byte packedModeByte = stream.readByte();
      channel = (packedModeByte >> 4) & 1; // Bit 4
      mode    = (packedModeByte >> 1) & 3; // Bits 1-2
      halt    = (packedModeByte & 1) != 0; // Bit 0 (Converted to boolean)

      relPitch = stream.readSint16LE();

      // Zero the wave address if we want to ignore the wave address info
      if (ignoreAddr)
            addr = 0;

      return !(stream.eos() || stream.err());
}

bool IIgsWaveInfo::finalize(Common::SeekableReadStream &uint8Wave) {
      uint32 startPos = uint8Wave.pos(); // Save stream's starting position
      uint8Wave.seek(addr, SEEK_CUR); // Seek to wave's address

      // Calculate the true sample size (A zero ends the sample prematurely)
      uint trueSize = size; // Set a default value for the result
      for (uint i = 0; i < size; i++) {
            if (uint8Wave.readByte() == 0) {
                  trueSize = i;
                  // A zero in the sample stream turns off looping
                  // (At least that's what MESS 0.117 and KEGS32 0.91 seem to do)
                  if (mode == OSC_MODE_LOOP)
                        mode = OSC_MODE_ONESHOT;
                  break;
            }
      }
      size = trueSize; // Set the true sample size

      uint8Wave.seek(startPos); // Seek back to the stream's starting position

      return true;
}

bool IIgsOscillator::finalize(Common::SeekableReadStream &uint8Wave) {
      for (uint i = 0; i < WAVES_PER_OSCILLATOR; i++)
            if (!waves[i].finalize(uint8Wave))
                  return false;

      return true;
}

00527 bool IIgsOscillatorList::read(Common::SeekableReadStream &stream, uint oscillatorCount, bool ignoreAddr) {
      // First read the A waves and then the B waves for the oscillators
      for (uint waveNum = 0; waveNum < WAVES_PER_OSCILLATOR; waveNum++)
            for (uint oscNum = 0; oscNum < oscillatorCount; oscNum++)
                  if (!osc[oscNum].waves[waveNum].read(stream, ignoreAddr))
                        return false;

      count = oscillatorCount; // Set the oscillator count

      return true;
}

bool IIgsOscillatorList::finalize(Common::SeekableReadStream &uint8Wave) {
      for (uint i = 0; i < count; i++)
            if (!osc[i].finalize(uint8Wave))
                  return false;

      return true;
}

bool IIgsInstrumentHeader::read(Common::SeekableReadStream &stream, bool ignoreAddr) {
      env.read(stream);
      relseg        = stream.readByte();
      /*byte priority =*/ stream.readByte(); // Not needed? 32 in all tested data.
      bendrange     = stream.readByte();
      vibdepth      = stream.readByte();
      vibspeed      = stream.readByte();
      /*byte spare    =*/ stream.readByte(); // Not needed? 0 in all tested data.
      byte wac      = stream.readByte(); // Read A wave count
      byte wbc      = stream.readByte(); // Read B wave count
      oscList.read(stream, wac, ignoreAddr); // Read the oscillators
      return (wac == wbc) && !(stream.eos() || stream.err()); // A and B wave counts must match
}

bool IIgsInstrumentHeader::finalize(Common::SeekableReadStream &uint8Wave) {
      return oscList.finalize(uint8Wave);
}

bool IIgsSampleHeader::read(Common::SeekableReadStream &stream) {
      type             = stream.readUint16LE();
      pitch            = stream.readByte();
      unknownByte_Ofs3 = stream.readByte();
      volume           = stream.readByte();
      unknownByte_Ofs5 = stream.readByte();
      instrumentSize   = stream.readUint16LE();
      sampleSize       = stream.readUint16LE();
      // Read the instrument header *ignoring* its wave address info

      return instrument.read(stream, true);
}

bool IIgsSampleHeader::finalize(Common::SeekableReadStream &uint8Wave) {
      return instrument.finalize(uint8Wave);
}

void IIgsMidiChannel::stopSounds() {
      // Stops all sounds on this single MIDI channel
      for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); ++iter)
            iter->stop();

      _gsChannels.clear();
}

void IIgsMidiChannel::removeStoppedSounds() {
      for (int i = _gsChannels.size() - 1; i >= 0; i--)
            if (!_gsChannels[i].playing())
                  _gsChannels.remove_at(i);
}

uint IIgsMidiChannel::activeSounds() const {
      uint result = 0;

      for (const_iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); ++iter)
            if (!iter->end)
                  result++;

      return result;
}

void IIgsMidiChannel::setInstrument(const IIgsInstrumentHeader *instrument, const int8 *sample) {
      _instrument = instrument;
      _sample = sample;

      // Set program on each Apple IIGS channel playing on this MIDI channel
      for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); ++iter)
            iter->setInstrument(instrument, sample);
}

void IIgsMidiChannel::setVolume(uint8 volume) {
      _volume = volume;

      // Set volume on each Apple IIGS channel playing on this MIDI channel
      for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); ++iter)
            iter->setChannelVolume(volume);
}

void IIgsMidiChannel::noteOff(uint8 note, uint8 velocity) {
      // Go through all the notes playing on this MIDI channel
      // and turn off the ones that are playing the given note
      for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); ++iter)
            if (iter->origNote == note)
                  iter->noteOff(velocity);
}

void IIgsMidiChannel::noteOn(uint8 note, uint8 velocity) {
      IIgsChannelInfo channel;

      // Use the default channel volume and instrument
      channel.setChannelVolume(_volume);
      channel.setInstrument(_instrument, _sample);

      // Set the note on and save the channel
      channel.noteOn(note, velocity);
      _gsChannels.push_back(channel);
}

void IIgsChannelInfo::rewind() {
      this->envVol = this->startEnvVol;
      this->envSeg = 0;
      this->pos = intToFrac(0);
}

void IIgsChannelInfo::setChannelVolume(uint8 volume) {
      this->chanVol = intToFrac(volume);
}

void IIgsChannelInfo::setInstrument(const IIgsInstrumentHeader *instrument, const int8 *sample) {
      assert(instrument != NULL && sample != NULL);
      this->ins = instrument;
      this->unrelocatedSample = sample;
}

// TODO/FIXME: Implement correctly and fully (Take velocity into account etc)
void IIgsChannelInfo::noteOn(uint8 noteParam, uint8 velocity) {
      this->origNote = noteParam;
      this->startEnvVol = intToFrac(0);
      rewind();

      const IIgsWaveInfo *waveInfo = NULL;

      for (uint i = 0; i < ins->oscList.count; i++)
            if (ins->oscList(i).waves[0].top >= noteParam)
                  waveInfo = &ins->oscList(i).waves[0];

      assert(waveInfo != NULL);

      this->relocatedSample = this->unrelocatedSample + waveInfo->addr;
      this->posAdd  = intToFrac(0);
      this->note    = intToFrac(noteParam) + doubleToFrac(waveInfo->relPitch/256.0);
      this->vol     = doubleToFrac(fracToDouble(this->envVol) * fracToDouble(this->chanVol) / 127.0);
      this->loop    = (waveInfo->mode == OSC_MODE_LOOP);
      this->size    = waveInfo->size - waveInfo->addr;
      this->end     = waveInfo->halt;
}

// TODO/FIXME: Implement correctly and fully (Take release time and velocity into account etc)
void IIgsChannelInfo::noteOff(uint8 velocity) {
      this->loop = false;
      this->envSeg = ins->relseg;
}

void IIgsChannelInfo::stop() {
      this->end = true;
}

bool IIgsChannelInfo::playing() {
      return !this->end;
}

/**
 * A function object (i.e. a functor) for testing if a Common::FSNode
 * object's name is equal (Ignoring case) to a string or to at least
 * one of the strings in a list of strings. Can be used e.g. with find_if().
 */
00701 struct fsnodeNameEqualsIgnoreCase : public Common::UnaryFunction<const Common::FSNode&, bool> {
// FIXME: This should be replaced; use SearchMan instead
      fsnodeNameEqualsIgnoreCase(const Common::StringArray &str) : _str(str) {}
      fsnodeNameEqualsIgnoreCase(const Common::String str) { _str.push_back(str); }
      bool operator()(const Common::FSNode &param) const {
            for (Common::StringArray::const_iterator iter = _str.begin(); iter != _str.end(); ++iter)
                  if (param.getName().equalsIgnoreCase(*iter))
                        return true;
            return false;
      }
private:
      Common::StringArray _str;
};

bool SoundGen2GS::loadInstruments() {
      // Check that the platform is Apple IIGS, as only it uses custom instruments
      if (_vm->getPlatform() != Common::kPlatformApple2GS) {
            debugC(3, kDebugLevelSound, "Platform isn't Apple IIGS so not loading any instruments");
            return true;
      }

      // Get info on the particular Apple IIGS AGI game's executable
      const IIgsExeInfo *exeInfo = getIIgsExeInfo((enum AgiGameID) _vm->getGameID());
      if (exeInfo == NULL) {
            warning("Unsupported Apple IIGS game, not loading instruments");
            return false;
      }

      // List files in the game path
      Common::FSList fslist;
      Common::FSNode dir(ConfMan.get("path"));
      if (!dir.getChildren(fslist, Common::FSNode::kListFilesOnly)) {
            warning("Invalid game path (\"%s\"), not loading Apple IIGS instruments", dir.getPath().c_str());
            return false;
      }

      // Populate executable filenames list (Long filename and short filename) for searching
      Common::StringArray exeNames;
      exeNames.push_back(Common::String(exeInfo->exePrefix) + ".SYS16");
      exeNames.push_back(Common::String(exeInfo->exePrefix) + ".SYS");

      // Populate wave filenames list (Long filename and short filename) for searching
      Common::StringArray waveNames;
      waveNames.push_back("SIERRASTANDARD");
      waveNames.push_back("SIERRAST");

      // Search for the executable file and the wave file (i.e. check if any of the filenames match)
      Common::FSList::const_iterator exeFsnode, waveFsnode;
      exeFsnode  = Common::find_if(fslist.begin(), fslist.end(), fsnodeNameEqualsIgnoreCase(exeNames));
      waveFsnode = Common::find_if(fslist.begin(), fslist.end(), fsnodeNameEqualsIgnoreCase(waveNames));

      // Make sure that we found the executable file
      if (exeFsnode == fslist.end()) {
            warning("Couldn't find Apple IIGS game executable (%s), not loading instruments", exeNames.begin()->c_str());
            return false;
      }

      // Make sure that we found the wave file
      if (waveFsnode == fslist.end()) {
            warning("Couldn't find Apple IIGS wave file (%s), not loading instruments", waveNames.begin()->c_str());
            return false;
      }

      // Set the MIDI program change to instrument number mapping and
      // load the instrument headers and their sample data.
      // None of the tested SIERRASTANDARD-files have zeroes in them so
      // there's no need to check for prematurely ending samples here.
      setProgramChangeMapping(&exeInfo->instSet.progToInst);
      return loadWaveFile(*waveFsnode, *exeInfo) && loadInstrumentHeaders(*exeFsnode, *exeInfo);
}

/** Older Apple IIGS AGI MIDI program change to instrument number mapping. */
00773 static const MidiProgramChangeMapping progToInstMappingV1 = {
      {19, 20, 22, 23, 21, 24, 5, 5, 5, 5,
      6, 7, 10, 9, 11, 9, 15, 8, 5, 5,
      17, 16, 18, 12, 14, 5, 5, 5, 5, 5,
      0, 1, 2, 9, 3, 4, 15, 2, 2, 2,
      25, 13, 13, 25},
      5
};

/** Newer Apple IIGS AGI MIDI program change to instrument number mapping. */
00783 static const MidiProgramChangeMapping progToInstMappingV2 = {
      {21, 22, 24, 25, 23, 26, 6, 6, 6, 6,
      7, 9, 12, 8, 13, 11, 17, 10, 6, 6,
      19, 18, 20, 14, 16, 6, 6, 6, 6, 6,
      0, 1, 2, 4, 3, 5, 17, 2, 2, 2,
      27, 15, 15, 27},
      6
};

/** Older Apple IIGS AGI instrument set. Used only by Space Quest I (AGI v1.002). */
00793 static const InstrumentSetInfo instSetV1 = {
      1192, 26, "7ee16bbc135171ffd6b9120cc7ff1af2", "edd3bf8905d9c238e02832b732fb2e18", progToInstMappingV1
};

/** Newer Apple IIGS AGI instrument set (AGI v1.003+). Used by all others than Space Quest I. */
00798 static const InstrumentSetInfo instSetV2 = {
      1292, 28, "b7d428955bb90721996de1cbca25e768", "c05fb0b0e11deefab58bc68fbd2a3d07", progToInstMappingV2
};

/** Information about different Apple IIGS AGI executables. */
00803 static const IIgsExeInfo IIgsExeInfos[] = {
      {GID_SQ1,      "SQ",   0x1002, 138496, 0x80AD, instSetV1},
      {GID_LSL1,     "LL",   0x1003, 141003, 0x844E, instSetV2},
      {GID_AGIDEMO,  "DEMO", 0x1005, 141884, 0x8469, instSetV2},
      {GID_KQ1,      "KQ",   0x1006, 141894, 0x8469, instSetV2},
      {GID_PQ1,      "PQ",   0x1007, 141882, 0x8469, instSetV2},
      {GID_MIXEDUP,  "MG",   0x1013, 142552, 0x84B7, instSetV2},
      {GID_KQ2,      "KQ2",  0x1013, 143775, 0x84B7, instSetV2},
      {GID_KQ3,      "KQ3",  0x1014, 144312, 0x84B7, instSetV2},
      {GID_SQ2,      "SQ2",  0x1014, 107882, 0x6563, instSetV2},
      {GID_MH1,      "MH",   0x2004, 147678, 0x8979, instSetV2},
      {GID_KQ4,      "KQ4",  0x2006, 147652, 0x8979, instSetV2},
      {GID_BC,       "BC",   0x3001, 148192, 0x8979, instSetV2},
      {GID_GOLDRUSH, "GR",   0x3003, 148268, 0x8979, instSetV2}
};

/**
 * Finds information about an Apple IIGS AGI executable based on the game ID.
 * @return A non-null IIgsExeInfo pointer if successful, otherwise NULL.
 */
const IIgsExeInfo *SoundGen2GS::getIIgsExeInfo(enum AgiGameID gameid) const {
      for (int i = 0; i < ARRAYSIZE(IIgsExeInfos); i++)
            if (IIgsExeInfos[i].gameid == gameid)
                  return &IIgsExeInfos[i];
      return NULL;
}

bool SoundGen2GS::loadInstrumentHeaders(const Common::FSNode &exePath, const IIgsExeInfo &exeInfo) {
      bool loadedOk = false; // Was loading successful?
      Common::File file;

      // Open the executable file and check that it has correct size
      file.open(exePath);
      if (file.size() != (int32)exeInfo.exeSize) {
            debugC(3, kDebugLevelSound, "Apple IIGS executable (%s) has wrong size (Is %d, should be %d)",
                  exePath.getPath().c_str(), file.size(), exeInfo.exeSize);
      }

      // Read the whole executable file into memory
      Common::SharedPtr<Common::MemoryReadStream> data(file.readStream(file.size()));
      file.close();

      // Check that we got enough data to be able to parse the instruments
      if (data && data->size() >= (int32)(exeInfo.instSetStart + exeInfo.instSet.byteCount)) {
            // Check instrument set's length (The info's saved in the executable)
            data->seek(exeInfo.instSetStart - 4);
            uint16 instSetByteCount = data->readUint16LE();
            if (instSetByteCount != exeInfo.instSet.byteCount) {
                  debugC(3, kDebugLevelSound, "Wrong instrument set size (Is %d, should be %d) in Apple IIGS executable (%s)",
                        instSetByteCount, exeInfo.instSet.byteCount, exePath.getPath().c_str());
            }

            // Check instrument set's md5sum
            data->seek(exeInfo.instSetStart);

            char md5str[32+1];
            Common::md5_file_string(*data, md5str, exeInfo.instSet.byteCount);
            if (scumm_stricmp(md5str, exeInfo.instSet.md5)) {
                  warning("Unknown Apple IIGS instrument set (md5: %s) in %s, trying to use it nonetheless",
                        md5str, exePath.getPath().c_str());
            }

            // Read in the instrument set one instrument at a time
            data->seek(exeInfo.instSetStart);

            // Load the instruments
            _instruments.clear();
            _instruments.reserve(exeInfo.instSet.instCount);

            IIgsInstrumentHeader instrument;
            for (uint i = 0; i < exeInfo.instSet.instCount; i++) {
                  if (!instrument.read(*data)) {
                        warning("Error loading Apple IIGS instrument (%d. of %d) from %s, not loading more instruments",
                              i + 1, exeInfo.instSet.instCount, exePath.getPath().c_str());
                        break;
                  }
                  _instruments.push_back(instrument); // Add the successfully loaded instrument to the instruments array
            }

            // Loading was successful only if all instruments were loaded successfully
            loadedOk = (_instruments.size() == exeInfo.instSet.instCount);
      } else // Couldn't read enough data from the executable file
            warning("Error loading instruments from Apple IIGS executable (%s)", exePath.getPath().c_str());

      return loadedOk;
}

bool SoundGen2GS::loadWaveFile(const Common::FSNode &wavePath, const IIgsExeInfo &exeInfo) {
      Common::File file;

      // Open the wave file and read it into memory
      file.open(wavePath);
      Common::SharedPtr<Common::MemoryReadStream> uint8Wave(file.readStream(file.size()));
      file.close();

      // Check that we got the whole wave file
      if (uint8Wave && uint8Wave->size() == SIERRASTANDARD_SIZE) {
            // Check wave file's md5sum
            char md5str[32+1];
            Common::md5_file_string(*uint8Wave, md5str, SIERRASTANDARD_SIZE);
            if (scumm_stricmp(md5str, exeInfo.instSet.waveFileMd5)) {
                  warning("Unknown Apple IIGS wave file (md5: %s, game: %s).\n" \
                        "Please report the information on the previous line to the ScummVM team.\n" \
                        "Using the wave file as it is - music may sound weird", md5str, exeInfo.exePrefix);
            }

            uint8Wave->seek(0); // Seek wave to its start
            // Convert the wave file from 8-bit unsigned to 8-bit signed and save the result
            _wave.resize(uint8Wave->size());
            return convertWave(*uint8Wave, _wave.begin(), uint8Wave->size());
      } else { // Couldn't read the wave file or it had incorrect size
            warning("Error loading Apple IIGS wave file (%s), not loading instruments", wavePath.getPath().c_str());
            return false;
      }
}

} // End of namespace Agi

Generated by  Doxygen 1.6.0   Back to index